
1

CVE-2020-29664
CVE-2020-29664 is a security vulnerability discovered during our research,
resulting in local arbitrary code execution without any hardware modifications
on the DJI Mavic 2 Remote Controller and Leadcore processor on the DJI
Mavic 2 Zoom drone.

During the firmware upgrade process a signature file (file.cfg.sig) and one
or more firmware files (file.cfg.fw) get uploaded to the device. The signature
file contains XML-data describing which firmware files have been uploaded
and their corresponding meta-data such as file size and checksums. The pro-
gram in charge of processing firmware upgrades is dji_sys.

int main() {
/* ... */

snprintf(cmd,0x100,"busybox find %s" \
"-name \"*.cfg.sig\"",
"/data/upgrade/backup/");

FILE *f = popen(cmd,"r");
if (f)

fgets(cfg_name, 0x100, f);
/* ... */

int verify_ret = dji_verify_sig(\
cfg_name,"/tmp/wm330_0000.xml",&DAT_0005c8a5);

/* ... */
}

Figure 1: Psuedocode of how signatures gets after upload.



2

Before the upgrade is performed, the signature and firmware files are ver-
ified to make sure that the data which was just uploaded came from DJI. The
program branches out to the program dji_verify via the C programming lan-
guage function popen. The program dji_verify verifies the file’s signature to
confirm the file sent is signed by DJI.

int dji_verify_sig(char *cfg_name,\
char *param_2, char *param_3) {

/* ... */
snprintf(cmd,0x100, \

"dji_verify -n %s -o %s '%s'", \
param_3,param_2,cfg_name);

FILE *f = popen(cmd,"r");
if (f)

fgets(cmd_output,0x100,f);
/* ... */

}

Figure 2: Psuedocode of how signatures gets verified.

The first parameter to this function is the filename of the signature file or
firmware file that will be verified. This string gets used by the call to snprintf,
which builds a shell-command executing dji_verify with a set of parameters,
where the last parameter is the provided filename surrounded by apostrophes.
This is done to prevent the filename from being interpreted as a valid shell-
command syntax, which could allow an attacker to execute arbitrary shell-
commands (command injection vulnerability).

The popen() function opens a process by creating a pipe, forking,
and invoking the shell. Since a pipe is by definition unidirectional,
the type argument may specify only reading or writing, not both.
The resulting stream is correspondingly read-only or write-only.

The command argument is a pointer to a null-terminated string
containing a shell command line.
This command is passed to /bin/sh using the -c flag.
Interpretation, if any, is performed by the shell.

Figure 3: Manual page for the function popen



3

The method in which the filename argument is sanitised (via apostrophes)
is flawed. By supplying a filename containing two apostrophes, it is possible
to escape the previous apostrophes and execute arbitrary commands. We have
verified this vulnerability andwritten a proof-of-concept capable of interacting
with the device via a shell.

def hack_device(command):
evil_name = "wm240_rcAA'`"
evil_name += command
evil_name += "`'.cfg.sig"
send_firmware_file(evil_name)

Figure 4: Psuedo code for how to execute arbitrary commands


